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ABSTRACT 

The electromagnetic fields generated by a beam inside a toroidal beam pipe are 
derived. Special attention has been given to the resonances developed. The effective 
impedance seen by the beam is computed and the effects of displacing the beam away 
the beam pipe center are considered. Applications are made to the SSC and the 
TEVATROn’. 
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I. INTRODUCTION 

All electromagnetic waves that can propagate in a straight beam pipe must have 
phase velocities larger than c, the velocity of light. As a result, the particle beam can 
never catch up with them and no resonance can occur, because the wave traveling 
with it will never have a velocity exceeding c. The situation of a curved toroidal beam 
pipe is quite different. The wave with a particular azimuthal harmonic IZ travels 
with different linear phase velocities depending on the distance from the center of the 
toroidal ring. For example, if the beam travels with velocity PC at a toroidal radius R, 
the electromagnetic wave traveling with the beam will have a phase velocity r/k/R 
at a radius T. When this phase velocity exceeds c, the electromagnetic wave should 
be able to propagate, in analogy to the straight beam pipe. The condition for this to 
happen is therefore 

RiP > 1 - 9 R (1.1) 
where R+ is the radius of the outer edge of the beam pipe. Under this situation, 
the electromagnetic wave generated by the beam interacts with the beam. In other 
words, a resonance occurs and the beam sees an impedance. This problem has been 
studied by Laslett-Lewish’ and Faltens-Laslett.2 Our approach, way of solution, and 
interpretation on the impedance seen are different from theirs. Our first attack on 
this problem was done in 1980 when longitudinal coupling impedance for the Energy- 
Doubler (or the TEVATRON) was examined,3 but no detailed report was written at 
that time. 

The main concern here is the SSC. W e want to investigate whether these reso- 
nances will affect the stability of the beam. The SSC main ring has a mean ring 
radius of 13200.95 m and a beam pipe radius of b = 1.5 cm. If the beam is at the 
center of the beam pipe, resonance can occur when the relativistic y > 663 according 
to criterion (1.1). Therefore we expect the beam to meet these resonances for the 
whole acceleration and storage cycle. 

For a wave that can ‘propagate’ inside a beam pipe of cross-sectional size b, the 
wavelength must be less than or of the order of b or the azimuthal harmonic must be 
bigger than the cutoff harmonic given by 

where 2j7R is the length of the particle orbit. For the toroidal beam pipe, in order 
that the particle beam can catch up with the resonant wa,ve, the condition is more 
restrictive, because boundary conditions have to be met in 41 three directions. The 
propagating electromagnetic wave, which has to travel with velocity c or bigger, is 



confined mainly to a small region near the outer edge of the beam pipe. Therefore, 
the wavelength will be much less than b. As it turns out in Section III, these resonant 
waves have a lowest azimuthal harmonic nil given by 

For a machine such as the SSC which has a large ring radius and a very narrow 
beam pipe radius, the cutoff harmonic n,, = 2.12 x 10s is very big. Thus the lowest 
resonant toroidal harmonic nil - 0( IO’) is very much larger than n,,. The effective 
impedance per unit harmonic of this lowest mode seen by the bea,m turns out to be 
0.36 R at - 20 TeV. But the SSC bunch has a rms length of of = 7 cm or a spectrum 
extending to a rms harmonic of only 1.89 x 105. Therefore these toroidal resonances 
should have negligible effect on the single bunch mode stability. This impedance can 
still drive a microwave growth, however. But this growth will be damped completely 
by the designed momentum spread of the beam. On the other hand, the story can 
be quite different for a small storage ring with a large beam pipe radius, because n,, 
will be small and the lowest toroidal resonant harmonics may not be larger than n,, 
by very much. 

In Section II, the fields excited by the particle beam in the toroidal beam pipe 
are computed by assuming perfectly conducting pipe wall. In Section III, we pick 
out the resonances and compute the resonant harmonics. The SSC main ring is used 
as an example. The figures of merit Q and the shunt impedances &, of some lower 
resonant modes are derived in Section IV using the usual perturbative method by the 
introduction of a finite wall conductivity. In Section V, the effective impedance seen 
by the beam is computed. Finally in Section VI, the application is extended to the 
SSC booster rings and the TEVATRON. 

II. THE FIELDS IN A TOROIDAL BEAM PIPE 

II.1 The model 

We shall use the Gaussian units except when specified otherwise. To simplify 
the mathematics, we consider a toroidal beam pipe with a rectangular cross section: 
width 2b and height h as shown in Fig. 1. Consider a beam in the mid-plane at a 
radius R, having a single azimuthal harmonic n, traveling at a single velocity PC, and 
having an angular phase frequency w. The charge density is 

/J(T, 8, z) = X&)6(r - R)&’ - ‘d , (2.1) 
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where X, is the line charge density and a cylindrical coordinate has been used (see 
Fig. 1). The current density has only a &xxnponent, 

Js(r, 8, .z) = XnpCS(Z)S(T - R)&e - wt) I (24 

Continuity requires w = nwo = n@c/R, where wo/27r is the revolution frequency of 
the beam particles. 

Because a cylindrical coordinate has been chosen, it is most convenient to solve 
first for electric and magnetic fields along the z-direction, E, and Hz, which satisfy 

everywhere inside the beam pipe except at the beam itself. The transverse (to z) 
fields & and dt can then be obtained from 

c= -W+$ xiH : 
=ptx Wt z 

(2.4) 

In above, we have assumed the time-dependence emtw* and the t-dependence sin& or 
cm (z. 

II.2 TM part with perfectly conducting walls 

We want to solve for the electromagnetic fields excited by the beam specified by 
Eqs. (2.1) and (2.2). Then all the fields must have exp[i(nO - ut)] behavior with 
w = nwo = n@c/R. The fields are divided into the TM part derivable from E, and 
the TE part derivable from Hz. Although this division is clear mathematically, care 
must be exercised to include both contributions in satisfying boundary conditions or 
matching fields across a charge or current distribution. 

From Eq. (2.3), we obtain 

cc 
E,T”(T, 8,Z, t) = C fa~“Zn(qiT) COS (i ZZO, (2.5) 

i=l 

where the exp[-in(B - wo] has been suppressed. The z dependence sin[;( k F z) has 

been chosen for HTE because the vertical magnetic field should vanish at z = *h/2. 
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As a result, EzE - 8HzE/dr will also vanish at z = fh/2. Then, EzM N cYE~~/~z 

must be made to vanish at z = &h/2 also. The cos &( $ F z) dependence for ETM 

is therefore the correct choice. The signs before the coefficients UT” and oTE are so 
chosen that, for the beam at the midplane, E, TM (HTE) should be odd (even) in z. 

Let us concentrate on the TM part. The radial wave is 

z&ir) = K(q;R-.)J,,(gir) - ~,(~~R-)y,(~~r) , (2.7) 

where J, and 1% are respectively the Bessel function and Neumann function of order 
n. Note that Z,, which is proportional to E,, has been constructed to vanish at the 
inner radius R- of the toroidal beam pipe. In order that it will vanish at the outer 
radius R+ , we set qiR+ equal to the i-th zero of Z&(z). From the wave equation (2.3), 
[; can then be determined by 

,t’ = (%g- q: 

We would like the reader to pay special attention to the terminology used here. The 
TM and TE imply transverse to the vertical or z-direction but not the usual beam 
direction. 

Next, we need to determine the coefficient a; TM. Before doing so, we must derive 
the orthonormal relation for Z,(q<r). Since Z,(q;r) satisfies 

wehavefori#j, 

(41 - 49) J’dl’ rdGL(44GL(qj) 
z? LT dr { Z,(qiV)$ [rY$Z,(rlj’)] - z,!rLrl$ [r$znCW)]} 

= rZ,iqir)gZ*(q,r) - rZ,!q,r)~Zn(y,r) 
Rt 

, 
R- 

(2.8) 

which vanishes for either the Dirichlet or Neumann boundary condition, indicating 
the orthogonality of Z,(qir). For the normalization, let us take the derivative of 
Eq. (2.9) with respect to qi and then let qj -+ q; before putting in the limits R*. We 
get, after making use of Eq. (2.8), 

J 
R+ 

2% R- (2.10) 
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The resulting orthonormal condition can be written as 

J R+ TdrZ,(qiT)Z,(qp-) = tiij,6NiTM,TE , R- (2.11) 

where for the Dirichlet problem or TM modes, the dimensionless normalization con- 
stant is 

N;rM = & g&R+) - g(q;q] , 1 (2.12) 

and for the Neumann problem or TE modes, 

JpE = & [ (2 - &) g;(q;R+) - R”- - f 
(RZ m) n Ql ] 

i’( .R-) 
(2.13) 

In above, ii = i(R+ + R-) is the average radius of the toroidal beam pipe, b = 
i(R+-R-) is t_he half width of the beam pipe, and 17 = b/ii. Note that in Eq. (2.13) 

we have used 2, defined by Eq. (2.23) b e ow 1 as the radial wave because it satisfies 
the Neumann boundary condition. If we define a dimensionless radial variable z by 

1‘ = ii( 1+ I)z) , (2.14) 

Eq. (2.11) that defines the dimensionless normalization constants NiTMsTE can be 
rewritten as 

J 
+* 

-1 dz(1 + r/2)2,2(5) = N;TM , (2.15) 

The Bessel functions of order n are complete in the r-space, and with the aid of the 
orthonormal relation, we can write 

The discontinuity of E, across t = 0 in Eq. (2.5) 
of Eq. (2.1) by Gauss’s law, which implies 

1s related to the charge density 

22aT”z,(qir) cos T = 47rX,J(r - R) 
i=l 

(2.17) 

Obviously, only the TM part contributes. Substituting Eq. (2.16) in Eq. (2.17), we 

get 

p = 2nLRZn(qiR) 
t @GM cos &h/2 

5 



Finally, we obtain for the TM part, 

Rx 
O” Z&;r)Zn(q;R) Cod( 5 F z) 

Ez(rt @>z> t) = f27&;j;;i;; i=l NTM 
cm &h/2 ZZO, (2.19) 

where again the factor exp[-in(8 - us)] has been suppressed. The transverse TM 
fields cm be obtained easily with the help of Eq. (2.4). Note that Eq. (2.19) will blow 
up when cos &h/2 = 0. We will discuss this in Section III. 

II.3 TE part with perfectly conducting walls 

Let us rewite Hz for the TE part, 

Here, [; is again given by 

through Eq. (2.3). However, q; is not the same as that for the TM part; it is determined 
from the boundary conditions of the radial magnetic field gotten from Eq. (2.4), 

Hr(r,@,%,t) =H,T”(T,8,Z,t)+H,TE(r,6,~,t), (2.22) 

where 

H,T"(r, 8,z, t) = f27d,,* c 
m zn(qir)Z,(q;R)COS~;(S 7 *) 

CM ;=I qfr-NFM cos Ei h/2 z<O, (2.23) 

H,TE(r, 0, z, t) = F r$%?;(qir) cm ti *iO. (2.24) 
,=I 1 

The radial magnetic field must vanish at T = R*. This is true for H,T”. Therefore, 
we must choose 

%(w) = y,‘(qiR-)Jn(qir) - J;(qiR-)Y,(qiv) , (2.25) 

with qiR+ equal to the i-th zero of g;(z). Again this qi is different from that in 
Eqs. (2.23); the latter is determined by the zeroes of Z, in Eq. (2.7). 

The strength of excitation uTE 
discontinuity of H, in Eq. (2.22) 

can be obtained from Ampere’s law. Equating the 
and the beam current in Eq. (2.2), we get 

HT”(~) - 5 =z;(qir) c.s $ = 
i=l Qi 

F / J#& 

= 4?rX&(r -R) (2.26) 
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We have shown that Zn(qir), being a linear combination of Bessel functions satisfying 
the Neumann boundary condition, obeys an orthogonality relation, 

/ 

Rt _ 

R- 
Z,(qir)i,(qjr)rdr = 0 ifj. 

Differentiating with respect to qi and 93, we get 

I R+ Z~(q;r)i~(qjr)r3dr = 0 R- i#.i 

We can therefore write 

J 

R+ s2~(qir)i~(qjV)T3dT = 6ijfl”JV; , 

R- 
(2.29) 

where fii is some dimensionless function of qiii and q;b. The strength aTE in Eq. (2.26) 
can now be solved easily; Eq. (2.20) can now be written as 

O” 2rAnpqiR3 lZn(qir)ZA(q;R) sin Ei ($ F Z) Hz(r,@,z,t) = -C ,- 
i=l W & m&h/2 

where 

m qiF”in(qir) sin&( $ T z) 
+C ,=I 2&R4Ji4 cos &h/2 

FTM = 
J ,‘I’ H,T”(r)g;(q<r)r3dr 

ZZO, (2.30) 

is the contribution of the TM part. Again there is a blowup if cos &h/2 = 0. 
All the transverse fields can now be obtained from Eqs. (2.19) and (2.30). For 

example, if the longitudinal coupling impedance is desired, Es can be computed using 
Eq. (2.4). It appears that Eqs. (2.19) and (2.30) are very complicated because the pi 
in the TM part is different from that in the TE part. However, they are approximately 
equal at low frequencies and the situation can be simplified tremendously. In fact, we 
do get back the familiar longitudinal space charge impedance provided that the beam 
is given a finite size. Fortunately, we will be dealing with toroidal resonances only in 
this paper and Eqs. (2.19) and (2.30) will not be pursued further. 

There is, however, another way to solve for the fields generated by the beam. The 
toroidal cavity can be divided into two toroids with P < R and T > R instead. The 
summation will then be over the eigenvalues of the vertical wave function which is 
the same for the TM and TE parts. The analysis of the coupling impedance at low 
frequencies will then be very much easier. This analysis will be presented elsewhere. 



III. RESONANCES 

111.1 The resonant waves 

We know that [; is obtained from 

[i” = $ - qf ) (3.1) 

where q;R+ is the i-th zero of Z,,(z) for the TM part or the i-th zero for the TE part. 
Whenever 

7r(2k - 1) 
E;= h k = 1, 2, “’ , (3.2) 

cos[ih/2 = 0 and one wave in the summation (2.19) or (2.30) goes to infinity. This is 
a resonant mode. The infinity comes in because we have treated the beam-pipe wall 
as perfectly conducting. 

Let us examine this particular mode. Substituting Eq. (3.2) in Eq. (2.5) the TM 
E, becomes 

E,(r,f3, z,t) = -aT”Z,(qir)sin *(2kh ‘)’ (3.3) 

for all z. Now E, is analytic across z = 0. In fact, this represents a wave in the 
empty beam pipe moving with the same angular velocity and has the same azimuthal 
variation as the beam. In other words, it is the solution of the homogeneous Maxwell’s 
equations but with the same 0 and t dependence as the beam. This implies that this 
wave can propagate by itself in the toroidal beam pipe without the presence of the 
beam. With the presence of the beam, this wave will interact with the beam because 
it has the same 0 and t dependence. Therefore a resonance will be established. 

Similar remarks can be made for the TE part. With & given by Eq. (3.2), the 
magnetic field in Eqs. (2.20) and (2.24) is analytic across z = 0, and the electromag- 
netic fields form a solution for the homogeneous Maxwell’s equations. Since these 
resonances do not require the support of the beam, the TM and TE parts can exist 
independently. Thus from now on we can talk about TM and TE modes. 

Given an i and a k, this resonant wave exists only for the harmonic n that satisfies 

Z&R+) = 0 and 
n2j32 7?(2k - 1)2 
- - u’= R2 h2 (3.4) 

for the TM modes, and 

i?;(qiR+) = 0 and 
n2/3s qf=-- 7?(2k - 1)s 

RZ h2 (3.5) 

for the TE mode. Therefore, for these resonant modes, we should write & instead of 
&, and the resonant azimuthal harmonic, the solution of Eq. (3.4) or (3.5), should be 
denoted by nik. 
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III.2 Solutions for resonant harnlonics 

In this section, we try to solve Eq. (3.4) for the TM modes and Eq. (3.5) for the 
TE modes. The problem is complicated because the harmonic n which we are solving 
for is the order of the Bessel functions in 2, or 2, and it also resides in the argument 
of 2, or 2, through pi. Observing that n should be much bigger than the cutoff 
harmonic n,, N R jb or Rfh, we can expand q;Rh as 

qi& = 

\/pR(l&:) 

g n 1* % - + - R2+fh; “2] 

[ 

= n[l f 7l* - Cx] 

E nz* ) (3.6) 

where 

b+ = R+ - R and b-=R-R- (3.7) 
are the distances of the beam from, respectively, the inner and outer edge of the beam 
pipe. The other two quantities, defined as 

cy _ 1 ~ RZ.rr2(2k - 1)2 
2-F 2nzh2 (3.8) 

are much smaller than unity. So q;R+ is always very near to n, or Z* = q;R+/n is very 
close to unity. Thus, the Bessel functions can be expressed in terms of Airy functions 
or their derivatives: 

where 

I 

$C312 = ln 1+y-m Z<l 

3-o 312 = Jzlzi- cos-l ; Z>l 

(3.9) 

(3.10) 
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Since z ? 1, we find 
< = 291 -z) + O(ll - #‘*) 

Therefore, comparing with Eq. (3.6), we have 

Cf = 2*‘Ye i 174 1 

where the subscript xk corresponds to qiR+. 
Now in terms of Airy functions, Eqs. (3.4) and (3.5) transform into, 

TM: Ai(-y)Bi(+) - Ai(z)Bi(-y) = 0 , 

TE: Ai’(-y)Bi’(z) - Ai’(s)Bi’(-y) = 0 , 

with 

{ 

z = 2’W/3(7)- + cl) 

y = 21/3n2/3(77+ - o!) 

EquaGons (3.13) and (3.14) can be rewritten as, 

TM: 

TE: 
Ai’ Ai’( -y) 

Bi)o= Bi’( -y) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

We see from Fig. 2 that, when 3: > 0, Ai(r)/Bi(z) and Ai’(z)/Bi’(z) are monotonic 
and decay to zero exponentially. Thus Eq. (3.16) or Eq. (3.17) will have no solution 
if both z and -y are positive aside from the trivial one zr = y = 0. Since z is positive 
[E,q. (3.15)], to arrive at a solution, we must have y positive or 17,. > 0~. Note that this 
condition is equivalent to criterion (l.l), b ecause at the limit of the criterion n:,” or 
n:,” goes to infinity (see below) and the second term of a in Eq. (3.8) vanishes. Under 
this situation, the left sides of Eqs. (3.16) are exponentially decaying, but the right 
sides are monotonically increasing and resemble the tangent curves having zeros and 
reaching fm. Since 

z l)-+@>l -=- (3.18) 
Y n-- 1 

when the right sides of Eq. (3.16) and Eq. (3.17) reach their respective zeroes, the left 
sides have already decayed to zero practically. Thus, to a high degree of accuracy, the 
solutions are (see Fig. 2): 

TM : Ai = 0 , (3.19) 

TE: Ai’ = 0 (3.20) 
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Therefore the resonant harmonics are given by 

21433 1 - 
5’ 

zk R 2y2 

R2n2(2k - I)~ = yi TM 

2&h= I i YI TE > 
(3.21) 

where -yi and -y: are respectively the ith zeroes if Ai and Ai’( the first few 
of which are listed in Table I. Since Ai starts off positive at y = 0 and .4i’(-y) 

y1 = 2.3381 y; = 1.0188 
yg = 4.0879 y; = 3.2482 
y3 = 5.5205 yj = 4.8201 
y4 = 6.7867 y: = 6.1633 
ys = 7.9441 y; = 7.3722 
y6 = 9.0227 y; = 8.4885 

Table I: Zeroes of Ai and Ai’( 

starts off negative at y = 0, it is obvious that the lowest resonant wave is a TE mode. 
The accuracy of the solutions can be improved straightforwardly by iterations of 

Eqs. (3.13) and (3.14) and by including more terms in Eq. (3.9). However, higher 
accuracy is not meaningful because firstly the cross section of the beam pipe is not 
exactly rectangular and secondly the toroidal ring is not perfectly round. 

In most cases, nik > (R3/bh*)‘/’ - nzi”, the last term on the left side of Eq. (3.21) 
can be neglected, and the solution can then be simplified to 

RtP TM 
-zz 

R 
TE 

The lowest mode is 
R+P -= 

R 
1 + o.8086n;,2’3 ) 

(3.22) 

(3.23) 

which is the first TE mode. This is the formula given by Faltens and Laslett.’ With the 
beam roughly at the center of the beam pipe, R N R, this lowest resonant harmonic 
reduces to 

- 3/2 
II;: = 1.375 f 

0 
= 0 (n;/q (3.24) 

11 



Note that formula (3.22) may not be accurate for the lowest modes. 
For the SSC, if we take b = h/2 = 1.5 cm, R = 13200.95 m, the lowest TM and 

TE resonant harmonics at 20 TeV (y = 20,000 1 1as been used) are respectively 

n;,” = 2.57 x lo9 

?I;,” = 1.40x109, (3.25) 

which differ by quite a bit from the results of the approximate formulas (3.22), n:,” = 
2.09 x 10’ and ny? = 6.01 x lo’, although the orders of magnitude are correct. 

The field distributions in the radial direction are plotted in Figs. 3 and 4 respec- 
tively for the lowest TM and TE modes. We see that the fields are always concentrated 
in a region between the beam and the outer edge of the beam pipe, where the linear 
velocity can be larger than c. Therefore, the wavelength should be much less than 
the size of the pipe. As 7 decreases, the resonant fields are pushed more and more 
towards the outer edge of the pipe in order to attain the velocity of light. As a result 

TE the wavelength decreases or the resonant azimuthal harmonic nylM or n,, Increases. 
When the beam velocity drops to the limit of criterion (l.l), the available region for 
propagation inside the pipe is squeezed to zero and n?,” or n:,” will be pushed to 
infinity. For this reason, Faltens-Laslett’s formula (3.22) will be accurate only at low 
beam momenta when n:,” or rz:f is large enough so that the third term in Eq. (3.21) 
can be neglected. 

Harmonics of other modes are tabulated in Table II. For comparison, the cutoff 
harmonics for this rectangular beam pipe are rzFoM = 1.95 x 10s and nz,” = 1.38 x 106, 
and the the revolution frequency is 3.61 kHz. However, for these cutoff harmonics 
the TM and TE imply transverse to the beam direction, which are different from the 
TM and TE defined in this paper. The cutoff harmonic for a circular beam pipe of 
radius 1.5 cm is n2,, = 2.12 x 106. 

It is interesting to note that our approximate solutions of the resonant frequencies 
in Eq. (3.21) do not depend on the radius of the inner edge of the beam pipe R-. 
The only requirement is that the radial distance of the beam from the outer edge of 
the beam pipe is small compared with the radius of the outer edge; or b+ < R+. In 
fact, we can reduce R- to zero and have the same solutions. Under this situation, 
the toroidal beam pipe cavity reduces to a cylindrical cavity of radius R+ and height 
h. The reason is very clear upon examining the fields in Figs. 3 and 4. At resonance, 
these fields are pushed towards a small region near the outer edge of the beam pipe 
and a,re vanishingly small near the inner edge. As a result, it does not matter at all 
whether the inner boundary of the beam pipe is present or not. 

It is worthwhile to point out that the harmonic n must be an integer. However, 
it has been treated as a continuous variable in the solution of the resonance modes. 
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Theoretically, the possibility that a solution lands at an exact integer is zero. There- 
fore, in the ideal situation of a toroidal cavity with infinitely conducting walls, there 
is no legitimate solution at all. In other words, the resonances with non-integer n 
which we have solved above are mathematical in nature only. They do not exist and 
will no affect the beam at all. However, when wall resistivity is introduced, each reso- 
nance will have a finite spread and will certainly cover some integers. Thus excitation 
becomes possible. 

IV. MODEL WITH FINITE WALL CONDUCTIVITY 

IV.1 Figure of merit 

If we introduce a finite wall conductivity (r, each resonance will no longer be infinite 
and has a finite width. The sharpness of the resonance is described by the figure of 
merit QTbM or QzE, which can be estimated from the volume and surface area of the 
beam-pipe cavity 

’ - ii suri”,“,“rea ’ (4.1) 

where 6 is the skin depth into the pipe wall. For our rectangular toroidal beam pipe, 
this estimate becomes (in mks units) 

(4.2) 

where 2s = 377 R is the impedance of free space. Taking copper at 4°K or c = 
1.80 x lo9 (Cm)-i, we get Q N 76.0&. Th ere ore the lowest resonance at - 20 TeV f 
has QT,” - 2.84 x 10s or a FWHM spread of f!.nTF = $,“/QT,” - 492. 

A more accurate definition of Q is 2~ times the ratio of the time-averaged energy 
stored to the energy loss per cycle. The power lost to the wall is 

= 
= f$$ i (I;i,(*dS , (4.3) 

where the subscript a stands for the resonance ilc of either the TM or TE mode, 
N 1 is the relative magnetic permeability of the pipe wall, and the integrals are 

:irried over the walls of the beam pipe. In writing down Eq. (4.3), we have made the 
approximation that the resonances are widely separated. 
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We next normalized the electric and magnetic fields of mode a by letting 

sa = e,.z , & = ha%& , (4.4) 

so that the volume integrals 

j” ~~I2dV = j” I~i,lw = 1 (4.5) 

Here e, and h, represent the strengths of the excitation and they are related. For 
example, if we take the absolute value squared of Faraday’s law, 

e,~ x ga = yh,“rl, , 
c (4.6) 

and integrate over the whole volume of the cavity, with the help of Eqs. (2.3) and 
(4.5), it is easy to find leaI = lh.1 in the Gaussian units. Note that we can still have 
an arbitrary choice of relative phase. 

The energy stored in the toroidal ring in this mode is 

E& = $1ea~2 = &lh,J2 (4.7) 

The figure of merit is therefore by definition, 

For the (iii)-th TM mode, using Eqs. (3.3) and (2.4), the normalized fields are 

(&k)z = 

(&k)B = 

(3-Iik)r = 

(-%k)B = 

i&R 
zn(qir) cos CkZ , 

J/iiqpq,Rp T 

d+qiR zn(Tqir) sin tkt , 

&&$G 
ZA(qir) sin & , (4.9) 
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where tk = ?r(% - 1)/h, A$” is given by Eq. (2.12), and n = nTk’“’ is the resonant 
harmonic. ilgain, the 6 and t dependences have been suppressed. Then, 

! s 
/<ik/2dS = 4 + 2 (R+/R)ZA*(qiR+) + CR-/R)Zc(q;R-) 

h R(R+lRYZZ(qiR+) - (R-/‘R)2Z~2(q;R-) ’ 
(4.10) 

Note that the second term, the contribution of the inner and outer curved surfaces, 
is very much less than the first term which comes from the top and bottom flat walls. 
Thus, retaining only the latter contribution, 

which is close to our estimate of (4.2). 
For the (ik)-th TE mode, the normalized fields axe 

(%k)z = 
qiR - 

J~nRu’zhli~) cos EkZ > 

(xik)r = - d&nRpi:,(qir) sin&Z , 

(7-Iik)S = 
iEkR %w) sinEkt 

&i$pqiii/3 1‘ 1 

(‘%)r = - deqjR ‘,(Tn,‘) cos tkZ , 

(‘ik)o = -d&Rin(‘iir)COSEki ) 

where & = 7r(2k - 1)/h, tiiTE is given by Eq. (2.13), 
harmonic. Then, 

and n = nzE is the resonant 

+wfR2 , 1 

‘) i:(qiR-)] 

(4.13) 

where the first two terms are the outer and inner curved wall contribut,ions while the 
third term comes from the upper and lower walls. Note that q;R m q;R* x n and 
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&R - nco. For the two terms n’/R* and qfR*/[& the ratio is 

n2Ei nco 
( > 

2 
mw T <l, 

so that the n’/R* terms can be neglected. The last term is 

(4.14) 

(4.15) 

Thus the main contribution comes from the qfR+/E: terms, or the curved surfaces 
only. At resonance, the normalization constants aE and J%$” given by E.qs. (2.12) 
and (2.13) can be simplified using the resonance condition of Eq. (3.4) or (3.5) as well 
as the Wronskian for Jn(z) and Y,(z). The results are 

NTE = 
ik (4.16) 

and 

,Aj’?” zz 
ek (4.17) 

Similarly, ,&(q,R*) in Eq. (4.13) can be simplified. Remember that the fields in a 
resonance are pushed mostly to the outer pipe boundary or the contribution of the 
inner wall is negligible compared with that of the outer wall. Mathematically, this is 
equivalent to 

&Z(qiR+j >> 1 

&iR-) 
and Y,‘Yd-1 >> 1 

y,‘“(qiR+) 
Then, Eq. (4.13) reduces to 

(4.18) 

and therefore 

QiiE = 5 (1 - ;) , (4.19) 

where ‘1 (X T*) and 01 are given by Eq. (3.8). Although o/7 is not negligible, it is 
usually small for higher resonance modes and at high energies. As a result, QsE turns 
out to give roughly the order of magnitude as Eq. (4.2). 

It is interesting to note that QzM receives its contribution mainly from the top and 
bottom flat walls and is therefore proportional to the height h of vacuum chamber. 
On the other hand, Q;k relies mostly on the contribution from the outer curved wall, 
it is therefore proportional approximately to b, the distance from the beam to the 
outer wall. 
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IV.2 Shunt impedance 

We first compute the amount of fields of the a-th mode, e, or h, in Eq. (4.4) 
excited by the beam by assuming a power loss in the pipe walls. Then the shunt 
impedance can be inferred. 

From Eqs. (4.3) and (4.8), the average power lost to the pipe wall for mode a is 

p= L wa [ 1 4?r 2&,‘h*12 
(4.20) 

The power loss can also be computed by the azimuthal electric field (&o),, seen by the 
beam current I 

P=&. 
f 

(&s)*l’d! (4.21) 

Equating Eqs. (4.20) and (4.21) and recalling that leaI = 11~~1, we get 

e; zz - $ j(E&I*&? (4.22) 

Denoting the ‘voltage’ dropped per unit current by 

.f (Ee)aT’df 
$a = 

ITI 

and substituting e: into Eq. (4.21), the average power loss becomes 

p = ~11/2,$q 

(4.23) 

(4.24) 

Therefore the shunt impedance or the impedance at w, is 

In mks units, this is 

zsh = ~/&,I2 (4.25) 

(4.26) 

Thus what we need to compute is da defined in Eq. (4.23) which is just the integral 
of (&o)~ along the beam orbit. Using the explicit expressions given in Eqs. (4.9) and 
(4.12), we obtain 

s I Z% It, 
hbqlfPZ N,TM TM, 

MaI* = 
4rR Id&./d&., 
hb3 2 Q, NTE TE, 

or 

(4.27) 
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where, in d.&*/dz, g,, is considered as a function of x defined by r = ii + bz. 
Recalling that q=R z n,, we get for the shunt impedance per unit harmonic (in mks 
units), 

47%&a (2k - 1)2R4 lz,,I&,, TM 

z sh - 4 h3b NTM 

- = 11 4&‘,,Qo R4 /di,,,d~~;e~ 
(4.28) 

- 
nd hb3 N,TE TE > 

where CM and N,TE are given by Eqs. (4.16) and (4.17). Again the contributions 
of the TM (TE) modes come mainly from the upper and lower planar walls (outer 
curved wall). 

As an illustration for the SCC, using b = h/2 = 1.5 cm and wall conductivity 
(copper at 4°K) 0 = 1.8 x lo9 (fim)-‘, the Q s 
modes at - 1 TeV and 

and J&/n for the lowest TM and TE 
N 20 TeV are listed in Table III. Aside from the field form 

factors which are the last factors in the .&h formulas of Eq. (4.28), 2.,/n N n-‘I* and 

Q N nw. 

1 TeV 20 TeV 

TE TM TE TM 

% 2.33 x lo9 5.39 x 10s 1.40 x 10s 2.57 x lo9 

fa 8.42 x lo3 GHz 1.95 x lo4 GHz 5.05 x 10s GHz 9.28 x lo3 GHz 

Q.2 2.97 x 10s 5.58 x lo6 3.25 x lo6 3.85 x 10s 

z sh 
- 7.45 x 10-5 R 2.07 x 1O-7 R 12 8.36 x 1OP fi 1.22 x 10-4 0 

&, 
- 5.84 x lo-’ R 2.00 x 1o-4 fi x 
72 efT 

3.59 10-l R 8.10 x lo-* R 

Table III: Impedances and positions of the lowest TE and TM modes 
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V. EFFECTIVE IMPEDANCE 

We have seen that a particle beam revolving along an orbit of a certain radius R 
will excite a series of TM and TE resonances centered at harmonics nzM and ns*. For 
particles traveling at a slightly different radius R + AR, another series of resonances 
will be excited at slightly different harmonics. We want to compute the AR which 
will excite the resonance at the next harmonic, i.e., n = nik + 1 where the superscript 
TM or TE has been suppressed. 

We need the beam position R as an implicit function of the particle velocity p 
and resonant harmonic n;k. This can be obtained by rewriting Eq. (3.21) as 

R+P - = 1 + a;r$s + - R2E: 
R 27& ’ 

where a; are related to the zeroes of the Airy function or its derivative. 

2-‘&~~ TM 
ai = 

2-9,: TE 

Differentiating Eq. (5.1), one obtains 

(~+z&&$oa<n;~~3+~) , 

(5.1) 

(5.2) 

(5.3) 

where Q is the frequency dispersion and olP is the momentum compaction. The SSC 
main ring will be operated well above transition; therefore Q Z op. Keeping only the 
lowest-order terms, Eq. (5.3) can be simplified to 

where b is the half width of the beam pipe. For the lowest TE mode which occurs at 
N 20 TeV, ny: = 1.40 x log. Taking 6 = 1.5 cm, we get 

AR = 1.32 x 10-i’ m , (5.5) 

which the radial offset of the particle beam to excite the lowest resonance at the next 
harmonic. If we use the simplified Faltens-Laslett’s formula of Eq. (3.23) instead, we 
will obtain only the first term in Eq. (5.4). 

The SSC main ring is designed to have a longitudinal momentum spread of Ap/p - 
lo-“ to avoid transverse instability. It has a frequency dispersion of 7P = 0.000233. 
Therefore the transverse half beam size is RqpAp/p - 2.9 x 10m4 m. From the designed 
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normalized transverse emittance E, = 1.0 x 10m6~ m-rad, we get a transverse half beam 
size of 4.5 x 10e4 m if an average beta-function of 200 m is assumed. Thus, radially 
across the beam of radius N 0.4 mm, a total of 

N = beam size N 6.1 x 107 

AR 

series of resonances can be excited. In other words, for a given il; of either the TE or 
TM mode, the resonances cover a range of harmonics of width - 10’. 

We have shown in Section IV.1 that the lowest resonance has a FWHM of 

An;: = n:," - - 430 , 
Q TIE 

(5.7) 

where the more accurate QT,” m Table III has been used. This implies that each 
particle beam of a definite radius in the SSC can excite - 430 lowest TE resonances. 
We therefore make the proposition that the effective impedance per harmonic of the 
a-th resonance seen by the beam should be .&h/n multiplied by the resonance width 

n,lQ,; or 

Here we have violated the condition that the resonances are far apart or isolated. 
Therefore, Eq. (5.8) may not be correct at all. However, it should give us a correct 
estimate. The results are tabulated in the last row of Table III. We see that for the 
lowest resonance lZ/nl,, - 0.360 which is not too small. However, recalling that the 
SSC bunch has a rms length of 7 cm, the bunch spectrum extends to a rms harmonic of 
only 1.89~ 105, whereas the resonance is at n Tp = 2.33 x 10’. Therefore this impedance 
should have negligible effect on bunch-mode stability. The effective impedance of this 
lowest mode, being a broad band of harmonic width - 6 x 10’ much bigger than 
the spread of the bunch spectral harmonic, can drive a fast microwave growth.4 But 
there is no alarm because the designed spread in momentum Ap/p N low4 warrants 
the Landau damping’ of the growth driven by an impedance per unit harmonic of 
15 R which is much larger than what we have here. The effective impedances of other 
higher modes are listed in Table III. 

A better approach may be to start from summing up the azimuthal electric fields ES 
due to these adjacent resonances and then compute the effective impedances Since 
the azimuthal electric fields for these resonances may not be in phase, the actual 
impedance computed will be less than that given by Eq. (5.8). 

Next let us consider moving the beam sideway from the center of the beam pipe. 
Let the fractional displacement outward be A. If the beam is at the inner edge of the 
beam pipe, A = -1, the form factor, which is defined as the last factor in Eq. (4.28), 
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vanishes because the radial wave Z(QT) or Z’(qr) is zero there. As the beam is moved 
outward keeping the linear velocity constant, the form factor increases and so does 
the resonant harmonic because the allowable space for the field becomes less and less. 
Due to criterion (l.l), the allowable space vanishes and there is no resonance possible 
when A reaches ij 

A,=l-“. 
2ysb (5.9) 

At this point the resonant harmonic reaches infinity and the form factor drops to zero. 
Thus, the effective impedance given by Eq. (4.28) rises from zero at the inner edge 
of the pipe, attains a maximum, and drops to zero at A, which is 0.56 and 0.9989 
when y = 1000 and 20000 respectively. The results are plotted in Fig. 5. We see that 
when y is not too big, for example N 1000, the impedance can be reduced by pushing 
the beam outward from the center of the pipe so that the region available for wave 
propagation is reduced. On the other hand, when -y is extremely large, for example 
- 20000, the impedance can be reduced by pushing the beam inward so that the form 
factor or the interaction between the beam and the resonant wave becomes smaller. 

VI. APPLICATIONS TO THE SSC BOOSTERS AND THE TEVATRON 

VI.1 The SSC injectors 

The injection system of the SSC consists of three boosters: the low energy booster 
(LEB), the medium energy booster (MEB), and the high energy booster (HEB). Some 
specifications of these booster rings‘are listed in Table IV. 

Ring radius 

Beam pipe radius 

y (injection) 

y (extraction) 

LEB 

39.73 In 

10 cm 

1.632 

8.585 

MEB HEB 

302.52 m 954.93 

10 cm 6.5 cm 

8.585 106.6 

106.6 1065 

Table IV: Sizes and injection and extraction y’s of the SSC injectors 

According to criterion (l.l), in order to have toroidal resonances, the minimum 
y’s required are 14.1, 38.9, and 85.7 respectively, where we have assumed that the 
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beam is at the center of the beam pipe. Therefore, we expect no such resonances will 
occur in the LEB. In Table V, we list the lowest resonances (TE modes) for the MEB 
and HEB at extraction energies, where the impedances are largest. The conductivity 
of stainless steel, 0 = 1.37 (n-m)-l is assumed 

MEB HEB 

ml 3.17 x 105 3.03 x 10s 

fa 5.00 x 10’ GHz 1.51 x lo2 GHz 

Q. 5.48 x lo4 6.70 x lo* 

2 sh 
- 0.769 R 0.0609 R 
n 

2 sh 
4.45 R 2.75 0 

n eff 

Table V: Impedances and positions of the lowest modes for the MEB and HEB 

The MEB has a bunch length of 0.14 m corresponding to an rms harmonic spectral 
spread of 2.1 x lo3 which is about 150 times less than the harmonic of the lowest 
toroidal resonance. The limit for mode-colliding instability’ is quite high, 1 Z-n Z/n1 N 
73 0. The fast microwave limit7 is Z/n - 13 0. A rms bunch area of 0.00187r eV-set, 
a rms energy spread of 3.8 x 10m5, and a bunch intensity of 2 x 10” particles have 
been assumed. In any case, no worry of instability is necessary. 

For the HEB, the limits’ for mode-colliding and fast microwave instabilities are 
IhZ/nl - 1.89 Cl and Z/n N 0.33 R respectively. A rms bunch area of 0.0018n eV- 
set, a rms energy spread of 1.3 x 10e5, and a bunch intensity of 2 x 10” particles 
have been assumed. The HEB has a bunch length of 0.04 m, corresponding to a 
rms harmonic spectral spread of 2.3 x lo4 which is about 130 times less than the 
harmonic of the lowest toroidal resonance. Thus, mode-colliding stability may be safe 
but microwave growth is not. At the very end of the cycle, the bunch area is blown 
up to 0.035~ eV-sec. The stability limits will be increased by - 86 times and the 
bunch will become very stable. However, we think that it is necessary to increase the 
bunch area in the whole acceleration cycle to safeguard stability. 

The HEB is superconducting. Let us consider for fun if the beam pipe were coated 
with a layer of copper in the same way as the main ring. The wall conductivity will 
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become cr = 1.6 x 10’ (a-m)-’ which is 1310 times bigger. In the last column of 
Table V, Qa becomes 2.43 x 10s and Zsh/n becomes 2.21 0,. We see that, unlike 
the SSC main ring, due to the much larger ratio of beam-pipe radius to ring radius, 
the resonance observed here (and for higher modes also) is very narrow indeed. The 
spread in harmonics is only - 1.25. The criterion for fast microwave stability driven 
by resonances narrower than the spectral width of the bunch iss 

& < 4171pIEle 
Q - /PI*” 

where up is the frequency dispersion and UE/E is the rms energy spread. Note that 
the average bunch current Ia, has been used instead and Zsh/Q is just the effective 
Z/n defined in Eq. (5.8). Taking 7s = 0.002772, DE/E = 1.3 x 10m5, we obtain the 
limit Z#h/Q = 11000 R. This indicates that reducing the wall resistivity of the beam 
pipe can help a lot under some special situation. 

VI.2 The TEVATRON 

The TEVATRON is very similar to the HEB of the SCC both in size and energy. 
The ring radius is 1 km, the beam pipe radius 3.1 cm, and the injection and extraction 
energies are 150 GeV and 1 TeV respectively. The lowest toroidal resonant modes are 
listed in Table VI. A wall conductivity of c = 1.37 x lo6 (a-m)-] is assumed. 

The colliding mode of the TEVATRON is designed to store proton and antiproton 
bunches of intensity - 1 x 1Or’ particles per bunch, rms bunch length 40 cm, rms 
energy spread of 1.2 x lo-*. Thus, the bunches are stable against fast microwave 
growth even if the impedance per harmonic is Z/la N 53 R. The bunch spectrum has 
a rms spread of 2500 harmonics which is three to four orders of nmgnitude below the 
lowest toroidal resonant harmonic. Thus, these toroidal resonances should not have 
any effects on the bunch stability. 
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150 GeV 1 TeV 

TE TM TE TM 

% 2.52 x lo7 6.78 x lo7 9.92 x 106 1.83 lo7 x 

fa 1.20 x lo3 GHz 3.24 x 10s GHz 4.73 x lo* GHz 8.73 x lo2 GHz 

&a 4.80 x lo4 1.30 x 105 5.63 x lo4 6.74 x lo4 

-?A? Z 
4.41 x 10-E 0 2.41 x lo-i0 R 1.04 x 12 10-Z fl 1.43 x 10-s R 

Zsh 
2.31 x lo--’ R 1.26 x lo-’ R n eff 1.83 R 0.387 R 

Table VI: Impedances and positions of the lowest TE and TM toroidal resonant modes 
for the TEVATRON 
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Fig. 1. The toroidal beam pipe with rectangular cross section. 
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Fig. 2. Plots of Ai/Bi and Ai'/Bi'. x has been taken as 5y. 
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Fig. 3. Plots of the azimuthal electric field Z(x) across the beam pipe 

for the lowest resonance. On the horizontal axes, x = -1, 0, 1 

refer to the inner edge, center, outer edge of the beam pipe. 

The beam is at the pipe center x = 0. The vertical scales are 

arbitrary. 
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Fig. 4. Plots of the azimuthal electric field Z'(x) across the beam pipe 

for the lowest resonance. On the horizontal axes, x = -1, 0, 1 

refer to the inner edge, center, outer edge of the beam pipe. 

The beam is at the pipe center x = 0. The vertical scales are 

arbitrary. 
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Fig. 5. Effective Z/n and resonant harmonic of the lowest 

resonance for various beam positions inside a toroidal 

beam pipe. The beam positions x = -1, 0, 1 denote the 

inner edge. center, outer edge of the beam pipe. 
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